Francesco De Chirico

Il mio grosso, grasso Power BI model

II mio grosso grasso Power BI model

Francesco De Chirico

<u>In /fdechirico/</u>

🗩 <u>@fdechirico</u>

Consultant, trainer and speaker Specializing in Power BI, SSAS, MDX, DAX and M. Using SSAS and MS BI Platform since 2001

Main certifications

MCT since 2008, SSAS Maestro in 2012 and Microsoft Professional Program Data Science in 2017

Projects

Ideator and co-developer of ASQA tool

https://ssasqueryanalyzer.github.io/

PASS

Agenda

- Why To optimize The problem
 - Demo
- Vertipaq engine overview
- How To optimize Best practices
- How to verify optimization DMV
 Demo
- Tools available
- Connect to .pbix data model
 - SSAS sandbox
 - Problem: how to get port number?
 - Demo
- Build a .pbix template
 - Power Vertipaq Demo

What we'll talk about

- What increase .pbix size
- What we can do to reduce .pbix size
- How to identify causes

What we'll NOT talk about

- Performance
- DAX
- Power Query and M

DEMO

VertiPaq engine in X ... X ... ok, 5 slides!

Vertipaq is an in-memory columnar database

	ROW SLOTE				
	ID	Name	Color	Price	
⇒	1	Sneakers	Red	139.99	
C	2	T-shirt	Red	18.00	-
	3	Hat	White	24.75	
C	4	Shirt	Black	70.00	+
	5	Shoes	Blue	185.50	
C	6	Polo-shirt	Red	49.99	\checkmark
-	7	Scarf	Blue	27.50	
C	8	Sweater	Black	95.00	+
-	9	Jacket	Black	375.00	2
	10	Trousers	Grey	175.99	

Down store

- Data is organized in rows
- Sum of Price:
 - Start reading the first row
 - Discard 75% of data (ID, Name.Color)
 - Retain the searched value (Price)
 - Move to the next row and repeat until the end of the table

Column store

- Data is organized in columns
 - Optimize vertical scanning
- Sum of Price:
 - scan the Price column ONLY

- Very fast on single-column access
- More columns require to reorganize the information
- The more columns you need the harder to obtain the result!

Interview of the second sec

Vertipaq compression in pills

beanTech

hn0va

A altitudo

Fluentis

Bits to store a single value = minimum bits of index entry All columns contain ONLY integer values It does not matter what the original data type is!

PALAZZETTI

IL CALORE CHE PIACE ALLA NATUR/

Vertipaq compression in pills

- RLE's efficiency strongly depends on the repetition pattern of the column
- Two rows with the same cardinality can have very different compression ratio
- Sorting of data is extremely important to improve the compression ratio
- In columns with very high cardinality (i.e. primary keys) RLE is larger then the column itself.

Vertipaq compression in pills

Run Length Encoding (RLE) applied to the dictionary-encoded version of a column

Data models in pills of pills!

Every relationship has an additional memory cost

beanTech

Normalized Memory cost:

ColumnCost(Price[Product Code]) + ColumnCost(Product[Product Code]) + ColumnCost(Product[Product Name]) + RelationshipCost(Price[Product Code])

PALAZZETT

WÜRTHPHOENÏX

Denormalized Memory cost:

ColumnCost(Price[Product Code]) + ColumnCost(Price[Product Name])

- Theorically the "optimal" model:
 - One single table

🔺 altitudo

hn0va

In reality it is less usable and would force to have a single granularity for all the measures

Interview of the second sec

Star schema

VertiPaq compression ratio - summary

Factor to consider (in order of importance):

- The cardinality of the column
 - Determines the number of bits used to store a value
- The distribution of data in the column

s Fluentis

- Many repeated values = high compression ratio
- Frequently changing values = low compression ratio

X PASS

Microsoft

- The number of rows in the table
- The datatype of the column

beanlech

It affects only the dictionary size

Well, now we know how VertiPaq engine works (more or less ⓒ), so ...

Best practices: at least 6 tips

- Import only useful columns
- Remove unused fields
 - Especially those with high cardinality
 - Best candidate: ID's
- Set correct data type
 - Typical issue: strings containing only numbers
- No datetime type!
 - Use ONLY date ← If you can ☺
 - If you need also time → next tips

altitudo

Best practices

- Split fields in two (or more) fields
 - Do you remember the previous tip? ⁽²⁾
 - Split a datetime field in two: Date AND Time
- Shrink fields to reduce cardinality
 - Changing the Precision of Numeric Columns
- Disable auto date/time functionality

🖉 Fluentis

- Particularly when you have many dates
- Cons: you need to manually build hierarchies!

X PASS

Microsof

Best practices – how to split

- Datetime
 - date \rightarrow (cardinality = 365 * number of years)
 - time \rightarrow (cardinality = 24h * 60min * 60sec = 86.400)
 - Ex: CAST(MyDateTime AS DATE) AS MyDate 2019/02/23
 - Ex: CAST(MyDateTime AS TIME(0)) AS MyTime 2019/02/23 12:37:45
- Big integer

📣 altitudo

hn0va

• High value (INT)

beanTech

- Low value (INT)
 - ex: CAST(MyBigValue / 1000000 AS INT) AS MyValue_High
 - ex: CAST(MyBigValue % 1000000 AS INT) AS MyValue_Low

PALAZZETT

- To obtain the original value:
 - MyValue_High * 1000000 + MyValue_Low

Interview of the second sec

Best practices – how to split

- Long strings
 - LEFT substrings (leftmost "n" chars)
 - RIGHT substring (rightmost "n" chars)
 - ex: LEFT(MyLongString, "n") AS MyString_Left
 - ex: SUBSTRING(MyLongString, "n" + 1, LEN(MyLongString) "n") AS MyString_Right

X PASS

Microsoft

- To obtain the original value:
 - CONCAT(MyString_Left, MyString_Right)

Interview of the second sec

- Decimal numbers
 - Integer part
 - Decimal part
 - ex: FLOOR(MyDecimalValue) AS MyValue_IntegerPart
 - ex: MyDecimalValue FLOOR(MyDecimalValue) AS MyValue_DecimalPart

PALAZZETT

Best practices – shrink fields

- long strings used as ID's
 - replace with integer \leftarrow If you can \odot
 - If used for a distinct count measure, replace with RANK()
- Decimal numbers
 - Reduce decimal precision ←If you can ☺
 - i.e. a temperature value with more than 2 decimal
- Calculations
 - Do not import columns containing result of calculation

X PASS

Microsoft

• Calculate the value in the model:

7 Fluentis

TotalSale = SUMX(Sales, Sales[Price] * Sales[Quantity])

Now the problem is ... "how to identify critical columns?"

Retrieve metadata info of Tabular model

- The "rough" way:
 - Connect to SSAS Tabular instance with SSMS
 - Execute a set of DMV using MDX/DMX queries
 - Store the results in a SQL database
 - Write some views to analyze data
- The "easy" way:

altitudo

hn0va

- Connect to SSAS Tabular instance with Vertipaq Analyzer
- Refresh the Power Pivot model

beanTech

Iuentis

- Cons:
 - DMV's results are not easy to analyze
 - Cannot join DMV's
 - Many DMV's to execute to retrieve useful data
- Pros:
 - Very simple to use

X PASS

• All calculations are provided in the Power Pivot model

DMV and VertiPaq Analyzer demo

Ok, but what about Power BI model? Is it possible to connect to a .pbix data model?

Connect to a .pbix data model

• YES, it is possible!!! 🙂

beanTech

🔺 altitudo

hn0va

Iluentis

• Power BI Desktop runs a <u>local instance of SSAS Tabular</u> engine in the background and it assigns a <u>random port number</u> to that local instance:

• It is possible to connect to that instance and to the Power BI model **BUT** <u>you need to know that port number</u> 🛞

WÜDTHDHOFNIX

PALAZZETT

L CALORE CHE PIACE ALLA NATUR

X PASS

Microsoft

How to get the port number?

- Command Line (CMD)
- DAX Studio
 - Connect to your .pbix
 - Local SSAS instance address on the right bottom of the DAX studio window
- Tabular Editor
- Power BI Desktop Temporary Location
 - Download Edition: %LocalAppData%\Microsoft\Power BI Desktop\AnalysisServicesWorkspaces
 - Store Edition: %username%\Microsoft\Power BI Desktop Store App\AnalysisServicesWorkspaces
 - Open "msmdsrv.port.txt"
- PowerShell (using the PowerShell module "<u>PowerBIPS.Tools</u>")

Iuentis

altitudo

Retrieve metadata info of Power BI desktop model

- The "rough" way:
 - Launch the Power BI desktop report you want to analyze
 - Found the port used by the local SSAS Tabular instance
 - Same steps used for Tabular model
- The "easy" way:
 - Launch the Power BI desktop report you want to analyze
 - Found the port used by the local SSAS Tabular instance
 - Same steps used for Tabular model

Retrieve metadata info of Power BI desktop model

• The "alternative" way:

hn0va

- Connect to the SQLite db used by the Power BI desktop model
 - Install SQLite ODBC driver (<u>http://www.ch-werner.de/sqliteodbc</u>) on your local machine
 - Open the .pbix model you want to analyze with Power Bi desktop
 - Go to "%LocalAppData%\Microsoft\Power BI Desktop\AnalysisServicesWorkspaces"
 - Identify the Workspace of your model → can be tricky
 - Copy the complete address of the metadata.sqlitedb ("..\Data\<GUID>.<VERSION>.db")
 - Get Data \rightarrow ODBC \rightarrow SQLite 3 Datasource
 - In the "Advanced Options" connection string insert:

"database=<mark><your metadata.sqlitedb file address></mark>"

Navigator

Display Options *

ODBC (database=C:\Users\fdechirico\AppD.

م ھ

Retrieve metadata info of Power BI desktop model

- The "ideal" (well, not exactly ... my "desiderata" ^(C)) way:
 - Launch the Power BI desktop report you want to analyze
 - Launch a second Power BI desktop report specifically designed to retrieve model info
 - Digit the name of the first Power BI desktop report (the one you want to analyze)
- The question is ...

IS IT POSSIBLE?

The answer is ...

The answer is ... Power Vertipaq!!!!

Power VertiPaq demo