
#sqlsat

SQL Server 2019 CTP2.2

Gianluca Hotz

Who am I?

Gianluca Hotz | @glhotz | ghotz@ugiss.org

Independent Consultant, Founder and Mentor SolidQ

20+ years on SQL Server (from 4.21 in 1996)

Database modeling and development, sizing and administration, upgrade and migration,
performance tuning

Interests

Relational model, DBMS architecture, Security, High Availability and Disaster Recovery

Community

20 years Microsoft MVP SQL Server (from 1998)

Founder and President UGISS
User Group Italiano SQL Server (PASS Chapter)

http://www.ugiss.org/
http://www.ugiss.org/
http://mvp.microsoft.com/
http://www.solidq.com/

Configuration

Installation

Most new things in 2016/2017

Separate downloads

IFI and tempdb configuration

Linux

R and Python integration

Polybase

Integration Services Scale-out

Polybase

SQL Server 2016+: Azure Blob Storage, Hadoop (separate option in 2019)

SQL Server 2019: SQL Server, Oracle, Teradata, MongoDB

PolyBase Java Connector for HDFS

SQL Server on Linux

Replication support

Snapshot, Transactional and Merge

Support for Microsoft Distributed Transaction Coordinator (MSDTC)

Always On Availability Group on Docker containers with Kubernetes

Kubernetes operator deploys StatefulSet including container with mssql-server
container and health monitor

OpenLDAP support for third-party AD providers

Machine Learning Services (In-Database) on Linux

New container registry

HA solution in Azure Kubernetes Service

Other Services

Master Data Services

Silverlight controls replaced with HTML

SQL Server Machine Learning Services

Windows Server Failover Cluster support

Partition-Based modeling

SQL Server 2019

Big Data Clusters (Preview)

Compute pool

SQL Compute

Node

SQL Compute

Node

SQL Compute

Node
…

Compute pool

SQL Compute

Node

IoT data

Directly

read from

HDFS

Persistent storage

…

Storage pool

SQL

Serve

r

Spark

HDFS Data Node

SQL

Serve

r

Spark

HDFS Data Node

SQL

Serve

r

Spark

HDFS Data Node

Kubernetes

pod

Analytics
Custom

apps BI

SQL Server

master instance

Node Node Node Node Node Node Node

SQL

Data mart

SQL Data

Node

SQL Data

Node

Compute pool

SQL Compute

Node

Storage Storage

Administration

Tools

SQL Server Management Studio V18 (Preview 6)

Azure Data Studio (was Operations Studio)

Resumable online index operations

Resume after index creation/rebuild failed (e.g. out of disk space)

Pause and resume later (e.g. free temporarily resources)

Create/rebuild large indexes using less log an shorter transactions

Fit rebuild operations into limited maintenance windows

REBUILD WITH (ONLINE = ON, RESUMABLE = ON, MAX_DURATION =
30 MINUTES);

Columnstore Indexes

Online build/rebuild Clustered Columnstore

DBCC CLONEDATABASE

Instantaneous schema-only copy of a database for troubleshooting

No data, full-schema, statistics and Query Store

Non-blocking

Read-only by default (can be changed)

Optionally NO_STATISTICS, NO_QUERYSTORE

SQL Server 2012 SP4, 2014 SP2 CU3, 2016 SP1, 2017

New in SQL Server 2019

Columnstore Statistics

Accelerated Database Recovery

Benefits

Fast and consistent database recovery
Number/size of active transactions don’t impact recovery time

Instantaneous transaction rollback
Active time and number of updates don’t impact rollback time

Aggressive Log Truncation
Even with long running transactions, prevents growing out of control

High level

Versioning all physical database modifications

Only logical operations undone (are limited and can be undone instantly)

Active transactions at crash time are marked as aborted

Any versions generated aborted transactions can be ignored user queries

Currently available in Preview in Azure SQL Database

Accelerated Database Recovery

Components
Persisted Version Store (PVS)

New version store, stored in the database instead of tempdb

Enable also resource isolation

Logical Revert

Asynchronous process performing row level version based undo
Keeps track of all aborted transactions

Performs rollback using PVS

Releases all locks immediately after transaction abort

sLog

Secondary log stream storing log records for non versioned operations
Low volume and in-memory

Serialized on disk during CHECKPOINT

Enables aggressive transaction log truncation

Cleaner

Asynchronous process that cleans page versions

Current database recovery process

Accelerated database recovery process

Improved diagnostic data for stats blocking

Query Waiting for synchronous update operations

Now sys.dm_exec_requests shows SELECT (STATMAN)

New WAIT_ON_SYNC_STATISTICS_REFRESH wait stat

Availability Groups Enhancements

More synchronous replicas

SQL Server 2012 4 replicas, 2 synchronous

SQL Server 2014 8 replicas, 2 synchronous

SQL Server 2017 8 replicas, 3 synchronous

SQL Server 2019 8 replicas, 5 synchronous

Secondary-to-primary read/write redirection

READ_WRITE_ROUTING_URL and ApplicationIntent=ReadWrite (default)

Killer feature to replace Listener
Cluster technology not offering listener-like features

Multi-subnet scenarios too complex to setup/maintain (e.g. Pacemaker)

Read scale-out or DR with cluster type NONE

Storage Class Memory / PMEM

Allows low latency I/O

memory-mapped memcpy-like operations in user mode

SQL Server 2016 SP1

NVDIMM-N for tail of the log caching

SQL Server 2019

PMEM devices Linux

support for data, log In-Memory OLTP checkpoint files placement

Hybrid Buffer Pool

Clean pages direct referenced on PMEM devices without copy

Dirty pages still kept in DRAM

Estimating Data Compression savings

sp_estimate_data_compression_savings

Returns specified object’s current size and estimates

SQL Server < 2019

ROW and PAGE compression

SQL Server 2019+

Adds COLUMNSTORE and COLUMNSTORE_ARCHIVE compression

Object type determines Columnstore type
E.g. Heap -> Clustered, Clustered index -> Clustered

Other SQL Server 2019 Enhancements

Lightweight query profiling infrastructure enabled by default

Profiling mechanism introduced in SQL Server 2016 SP1

2% expected CPU overhead vs. 75%

Internal pages information

Undocumented DBCC PAGE

New in SQL Server 2019
sys.dm_db_page_info(DatabaseId, FileId, PageId, Mode)

page_resource column in sys.dm_exec_requests and sys.sysprocesses

sys.fn_PageResCracker(page_resource) to get db_id, file_id, page_id

Development

Truncation error messages

Error message 8152 too generic

String or binary data would be truncated

SQL Server 2019 introduces message 2628

String or binary data would be truncated in table '%.*ls',
column '%.*ls'. Truncated value: '%.*ls’

Enabled with Trace Flag 460

Opt-in required to avoid breaking parsing applications

Extensibility Framework

Secure external script execution

Scale/optimization opportunities

SQL Server integration (e.g. store procedures, PREDICT)

Language Support

SQL Server 2016+ Support for R

SQL Server 2017+ Support for Python

SQL Server 2019+ Support for Java

Extensibility Framework Architecture

Extensibility Framework Components

Launchpad Service

One per SQL Server instance (with Machine Learning Services)

Provides security isolation

BxlServer

Manage communications between SQL Server and external processes

Binary Exchange Language data format

SQLSatellite

Extensibility API used by BxlServer

I/O data/arguments , error handling

Java Language extension

Leverages Extensibility Framework

Through sp_execute_external_script

Current support

On Windows version 1.10 (JRE 10, JDK 10)

On Linux version 1.8 (JRE 8, JDK 8)

UTF-8 Support

Full support for import/export, collations, replication, …

Still not for Linked Servers, In-Memory OLTP, External Table
(Polybase)

CHAR and VARCHAR support (Windows collations only)

UTF8 in collation names

E.g. LATIN1_GENERAL_100_CI_AS_SC_UTF8

Can provide storage savings

E.g. 50% from NCHAR(10) to CHAR(10) with UTF8 (20 vs 10 bytes)

SQL Graph enhancements

Derived tables and view support in MATCH queries

Set of nodes/edges using UNION ALL

Useful for heterogeneous entities or connections between them

MATCH support in MERGE

Edge Constraints

CONNECTION constraint

Security

Certificate Management

Extended in SQL Server Configuration manager

View and validate certificates installed

View certificates close to expiration

Deploy Certificates across machine in Availability Groups

Deploy Certificates across machine in Failover Cluster Instances

SQL Data Discovery and Classification

SQL Server management Studio Tool (V17.5)

Discovery & Recommendations, Labeling, Reporting

Metadata con be persisted and queried

Based on Extended Properties
sys_information_type_name, sys_sensitivity_label_name

Support for SQL Server 2008+ and Azure SQL Database

SQL Server Sensitivity Classification

SQL Server 2019+

(already available in Azure SQL Database)

T-SQL command ADD|DROP SENSITIVITY CLASSIFICATION

applies to tables, columns

LABEL, LAtBEL_ID, INFORMATION_TYPE, INFORMATION_TYPE_ID

Metadata stored in sys.sensitivity_classifications

SQL Server Audit add column data_sensitivity_information

Data Discovery and Classification Demo

Always Encrypted with Secure Enclaves

Basic architecture as SQL Server 2016+ implementation

Now allows server-side computation on encrypted columns

In-Place Encryption (ALTER TABLE for initial encryption)

Rich computations (e.g. range comparisons, LIKE predicates, …)

Inside secure enclaves

Virtualization-based Security (VBS) secure memory enclaves
also known as Virtual Secure Mode(VSM) enclaves

Operation on plaintexts cannot be disclosed outside enclave

Column Master Keys sent over secure channel by client driver

Still some limitations (no indexing)

Performance optimizations pending…

Data Masking

Dynamic Data Masking

On the original database

Original data intact

On-the-fly at query time

Based on user permissions

Static Data Masking

On a copy of the database

Original data not retrievable

At storage level

Masked for everyone

Static Data Masking

Component of SQL Server Management Studio V18 Preview5+

Define per-column masking configuration

NULL, Single-Value, Shuffle, Group Shuffle, String Composite

Can save and load it

It’s basically a backup/restore and modify data according to config

No automation yet

Static Data Masking Limitations

No temporal and memory-optimzed tables

No computed and identity columns

No geometry and geography types

Azure SQL Database Hyperscale service tier not supported

Statistics not updated

No cleanup in case of error

can leave sensitive data copies (backupset)

Data and log files may contain sensitive data

retrievable with hex editor

Performance

Intelligent Query Processing

Intelligent QP

Adaptive QP

Adaptive Joins Batch Mode
Interleaved

Execution

Memory Grant

Feedback

Row Mode Batch Mode

Approximate

QP

Approximate

Count Distinct

Table Variable

Deferred

Compilation

Batch Mode

on Row Store

Scalar UDF

Inlining

Execution Modes

Row Mode

Execution tree iterators consume 1 row at a time

Traditional execution mode for Rowstore

Batch Mode

Execution tree iterators consume a batch of rows at a time

Optimal with large scan operations (e.g. large table aggregates or joins)

SQL Server 2012 introduced to leverage Columnstore Indexes

SQL Server 2016/2017 extended usage scenarios for CI

SQL Server 2019 extended usage scenarios to Rowstore

Batch Mode on RowStore

Help reducing CPU Consumption

Columnstore still a better choice

for OLAP workload that is I/O bound

can’t always create it (e.g. impact on OLTP, features not supported)

Limitations

In-Memory tables not supported (only heaps & disk-based b-trees)

Not used when fetching/filtering LOB columns

(including sparse columns sets & XML)

Batch Mode on Rowstore Control

SQL Server < 2019

Some scenarios covered with tricks… (article part1, part2, part3)

SQL Server 2019+

Scenarios supported directly by Query Processor

On by default with database compatibility level 150+

ALTER DATABASE SCOPED CONFIGURATION
SET BATCH_MODE_ON_ROWSTORE = ON|OFF

OPTION (USE HINT ('ALLOW_BATCH_MODE’));

OPTION (USE HINT (‘DISALLOW_BATCH_MODE'));

https://www.itprotoday.com/sql-server/what-you-need-know-about-batch-mode-window-aggregate-operator-sql-server-2016-part-1
https://www.itprotoday.com/sql-server/what-you-need-know-about-batch-mode-window-aggregate-operator-sql-server-2016-part-2
https://www.itprotoday.com/sql-server/what-you-need-know-about-batch-mode-window-aggregate-operator-sql-server-2016-part-3

Memory Grant

Excessive Grant

Too much memory allocated vs. memory used

Impact: blocking, out-of-memory, reduced concurrency

Poor Grant

Not enough memory allocated resulting in data spill to tempdb

Impact: slow query, excessive disk usage (tempdb)

Grant increase

dynamic grants increase allocation too much

impact: server instability, unpredictable performance

Memory Grant Feedback

Post-execution evaluation

Updates grant value for cached plan

E.g. more memory if spilled, less if excessive grant

Version support

SQL Server 2017+ Batch Mode

SQL Server 2019+ Row Mode

Plan caching

Not persistent (i.e. not save in Query Store)

OPTION(RECOMPILE) prevents caching and memory grant feedback

Memory Grant Feedback Control

Batch Mode

On by default with database compatibility level 140+

ALTER DATABASE SCOPED CONFIGURATION
SET BATCH_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF

OPTION (USE HINT('DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK'));

Row Mode

On by default with database compatibility level 150+

ALTER DATABASE SCOPED CONFIGURATION
SET ROW_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF

OPTION (USE HINT ('DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK'));

Troubleshooting Memory Grant Feedback

Parameter sensitive scenarios

Some queries requires different plans with different grants

Memory grant feedback will disable itself when unstable

Extended Events to monitor changes

SQL Server 2017+ memory_grant_feedback_loop_disabled

SQL Server 2019+ memory_grant_updated_by_feedback

SQL Server 2019+ execution plan attributes

IsMemoryGrantFeedbackAdjusted
No: First Execution, Accurate Grant, Feedback disabled

Yes: Adjusting, Stable

LastRequestedMemory

Batch mode adaptive joins

Scenario

Nested loop algorithm better for small build join inputs

Hash algorithm better for bigger inputs

Adaptive joins defer choice after first input scanned

Interleaved Execution

Problem with multi-statement table valued functions (MSTVFs)

SQL Server <= 2012 optimize with cardinality = 1

SQL Server 2014 & 2016 optimize with cardinality = 100

SQL Server >= 2017

Start optimization

Pause and executes MSTVFs if candidate

Resume optimization with correct cardinality

Table Variable vs Temporary Tables

Area Temporary Tables Table Variables

Manual statistics creation and update Yes No\

Indexes Yes Only inline index definitions allowed

Constraints Yes Only PRIMARY KEY, UNIQUE and CHECK

Automatic statistics creation Yes No

Creating and using a temporary object in

a single batch

Compilation of a statement that

references a temporary table that doesn’t

exist is deferred until the first execution of

the statement

A statement that references a table

variable is compiled along with all other

statements before any statement that

populates the Table Variable is executed,

so compilation sees it as 1

Table Variable Deferred Compilation

Before SQL Server 2019

Statement referencing TV compiled before population

Number of row estimate fixed at 1

Starting with SQL Server 2019

Behaves like Temporary Tables

Statement referencing non existing TV is deferred until first execution

Number of row estimate much better

Control

On by default with database compatibility level 150+

ALTER DATABASE SCOPED CONFIGURATION
SET DEFERRED_COMPILATION_TV = ON|OFF

OPTION (USE HINT ('DISABLE_DEFERRED_COMPILATION_TV'));

Scalar UDF inlining

T-SQL user defined functions that returns a single data value

Performance problems

Iterative invocation
once per row, context switching especially with query execution

Lack of costing
before, only relational operators were costed, assumption to be cheap…

Interpreted execution
each statement executes in isolation, no cross-statement optimizations

Serial execution
Intra-query parallelism not allowed

Scalar UDF Automatic inlining

In SQL Server 2019 Scalar UDF automatically transformed into

Scalar Expressions

Scalar Subqueries

Optimize the whole plan (UDFs no longer visible)

Control

On by default with database compatibility level 150+

ALTER DATABASE SCOPED CONFIGURATION
SET TSQL_SCALAR_UDF_INLINING = ON|OFF

OPTION (USE HINT ('DISABLE_TSQL_SCALAR_UDF_INLINING'));

CREATE FUNCTION … WITH INLINE = ON | OFF

Scalar UDF inlining example

Query without UDF Query with UDF (no inlining) Query with UDF (inlining)

Execution time 1.6 seconds 29 minutes 11 seconds 1.6 seconds

CREATE FUNCTION dbo.discount_price(@price DECIMAL(12,2), @discount DECIMAL(12,2))
RETURNS DECIMAL (12,2) AS BEGIN RETURN @price * (1 - @discount); END

SELECT L_SHIPDATE, O_SHIPPRIORITY
, SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT))
FROM LINEITEM, ORDERS
WHERE O_ORDERKEY = L_ORDERKEY
GROUP BY L_SHIPDATE, O_SHIPPRIORITY
ORDER BY L_SHIPDATE

10GB CCI compressed TPC-H Schema, 2 x CPUs (12 cores), 96GB RAM, SSD storage

Scalar UDF inlining requirements

Written using the following constructs

DECLARE, SET (var declaration/assignments)

SELECT (single/multiple var assignments)

IF/ELSE (arbitrary nesting levels)

RETURN (single or multiple)

UDF nested/recursive function calls

Relational operations like EXISTS, ISNULL

No invocation of functions that are

time-dependent (GETDATE())

has side effects (NEWSEQUENTIALID())

Uses EXECUTE AS CALLER (default)

No table variables references

No table-valued parameters references

No user-defined types references

Not natively compiled

interop supported

Not a partition function

Not referenced in

GROUP BY clauses

computed columns

check constraints

No signatures added to it

Scalar UDF inlining troubleshoting

Column is_inlineable in sys.sql_modules

Doesn’t imply it will always be inlined! (e.g. 1000s lines of code)

Execution Plan

If inlined successfully, xml node <UserDefinedFunction> will be missing

Extended Events

tsql_scalar_udf_not_inlineable

APPROX_COUNT_DISTINCT

Returns approximate number of unique non-null values in groups

HyperLogLog algorithm guarantees
up to 2% error rate within 97% probability

Fast data exploration with low memory footprint

E.g. dashboards, trend analysis, feature selection, etc.

Think 10 billion rows,
1 user using 1,5GB memory vs 100 users using 12MBs

Tradeoff: precision, only scenarios where exact values are not necessary!

Q&A

